Minggu, 25 Mei 2014

TEOREMA PYTHAGORAS

TEOREMA PYTHAGORAS
Sobat hitung pasti tidak asing lagi dengan rumus a2 + b2 = c2. Itu adalah rumus dari teorema pythagoras. Kurang lebih 2500 tahun yang lalu seorang filsuf  yunani bernama Pythagoras menemukan fakta menarik tentang segitiga. Beliau menyatakan dalam sebuah segitiga siku-siku (salah satu sudutnya 90o), kuadrat sisi miringnya akan sama dengan jumlah kuadrat dari 2 sisi yang lain. Mari sobat hitung simak gambar berikut.
Jika kita punya sebuah segitiga siku-siku dengan sisi a,b, dan c
segitiga siku-sikuAkan berlaku
a2 + b2 = c2
dalam teorema yang dikemukakan oleh Pythagoras, sisi c atau sisi miring disebut dengan hipotenusa
Jika kuadrat merupakan luasan persegi, maka berlaku luasan persegi dari panjang sisi a + luasan persegi dari panjang sisi b = luasan panjang dari sisi c. Luasan ini akan kita gunakan untuk membuktikan rumus teorema Pythagoras, simak gambar berikut
pembuktian teorema pythagoras
dengan melihat gambar di atas maka
a^2 + b^2 = C^2
Pembuktian Toerema Pythagoras
Banyak cara yang bisa digunakan untuk membuktikan kebenaran teorema ini. Sobat bisa praktek langsung dengan alat atau menggunakan coret-coretan di kertas. Berikut ini pembuktian paling sederhana tentang kebenaran teorema Pythagoras dengan menggunakan luasan segitiga dan luasan persegi. Jika sobat punya segitiga siku-siku, cobalah menyusunnya membentuk kotak seperti di bawah ini.
pembuktian dalil pythagoras
Luas Persegi Besar = Luas Persegi
putih Kecil + Luas 4 Segitiga

(a+b)2 = c2 + 2.a.b
a2 + 2ab + b2 = c2 + 2ab
a2 +b2 = c2
 Pembuktian teorema Pythagoras lainnya yang bisa sobat hitung lakukan adalah menggunakan tegel lantai, jika lantai rumah ada tegel atau ubinya, coba sobat buat segitiga alas 4 ubin dan tinggi 4 ubin
aplikasi phytagoras di kehidupanCoba sobat ukur panjang sisi miring dari segitiga di ubin tersebut (garis warna merah). Jika pengukuran sobat benar maka akan di dapat panjang sisi miring adalah 5 kali panjang ubin.
Penerapan Teorema Pythagoras di kehidupan sehari-hari
1. Penerapan dalam menyelesaikan soal
Banyak soal matematika dan fisika yang untuk menyelesaikannya perlu menggunakan rumus Pythagoras.
contoh soal Pythagoras.
Tentukan diagonal ruang dari balok dengan panjang 3 cm, lebar 4 cm, dan tinggi 5 cm. Untuk menentukan panjag diagola ruang balok tersebut mau tidak mau kita harus menggunakan rumus Pythagoras.
Diagonal bidang =  √(32 + 42) =√25 = 5 cm
Diagonal ruang = √(52 + 52) = √250 = 5√10 cm
2. Penerapan dalam praktek nyata
Penerapan teorema Pythagoras dilakukan di banyak bisang terutama bidang arsitektur. Arsitek menggunakannya untuk mengukur kemiringan bangunan, misalnya kemiringan sebuah tanggul agar mampu menahan tekanan air. Ini juga sangat membantu dalam menentukan biaya pembuatan bangunan. Seorang tukang kayu pun untuk membuat segitiga penguat pilar kayu menggunakan teorema Pythagoras.

Minggu, 04 Mei 2014

matriks

Metriks adalah kumpulan bilangan berbentuk persegi panjang yang disusun menurut baris dan kolom. Bilangan-bilangan yang terdapat di suatu matriks disebut dengan elemen atau anggota matriks. Dengan representasi matriks, perhitungan dapat dilakukan dengan lebih terstruktur. Pemanfaatannya misalnya dalam menjelaskan persamaan linier, transformasi koordinat, dan lainnya. Matriks seperti halnya variabel biasa dapat dimanipulasi, seperti dikalikan, dijumlah, dikurangkan dan didekomposisikan.


Bentuk Matriks








Penjumlahan dan pengurangan matriks

Penjumlahan dan pengurangan matriks hanya dapat dilakukan apabila kedua matriks memiliki ukuran atau tipe yang sama. Elemen-elemen yang dijumlahkan atau dikurangi adalah elemen yang posisi atau letaknya sama.
 
 

atau dalam representasi dekoratfinya











Perkalian Skalar
Matriks dapat dikalikan dengan sebuah skalar.
\lambda\cdot A := (\lambda\cdot a_{ij})_{i=1, \ldots , m; \ j=1, \ldots , n}
Contoh perhitungan :
5 \cdot
  \begin{pmatrix}
    1 & -3 & 2 \\
    1 &  2 & 7
  \end{pmatrix}
  =
  \begin{pmatrix}
   5 \cdot 1 & 5 \cdot (-3) & 5 \cdot 2 \\
   5 \cdot 1 & 5 \cdot   2  & 5 \cdot 7
  \end{pmatrix}
  =
  \begin{pmatrix}
    5 & -15 & 10 \\
    5 & 10  & 35
  \end{pmatrix}

Perkalian matriks

Matriks dapat dikalikan, dengan cara tiap baris dikalikan dengan tiap kolom, lalu dijumlahkan pada baris yang sama.


 c_{ij}=\sum_{k=1}^m a_{ik}\cdot b_{kj}
Contoh perhitungan :

  \begin{pmatrix}
    1 & 2 & 3 \\
    4 & 5 & 6 \\
  \end{pmatrix}
  \cdot
  \begin{pmatrix}
    6 & -1 \\
    3 & 2 \\
    0 & -3
  \end{pmatrix}
  =
  \begin{pmatrix}
     1 \cdot 6  +  2 \cdot 3  +  3 \cdot 0 &
     1 \cdot (-1) +  2 \cdot 2 +  3 \cdot (-3) \\
     4 \cdot 6  +  5 \cdot 3  +  6 \cdot 0 &
     4 \cdot (-1) +  5 \cdot 2 +  6 \cdot (-3) \\
  \end{pmatrix}
  =
  \begin{pmatrix}
    12 & -6 \\
    39 & -12
  \end{pmatrix}

Jenis-jenis Matriks

Jenis-jenis matriks dapat dibagi berdasarkan ordo dan elemen / unsur dari matriks tersebut.

Berdasarkan ordo Matriks dapat di bagi menjadi beberapa jenis yaitu :
  • Matriks Bujursangkar adalah matriks yang memiliki ordo n x n atau banyaknya baris sama dengan banyaknya  kolom yang terdapat dalam mtriks tersebut. Matriks ini disebut juga dengan matriks persegi berordo n.
          Contoh : 


  • Matriks Baris adalah Matriks Baris adalah matriks yang terdiri dari satu baris
          Contoh :    A =  ( 2  1  3  -7 )

  • Matriks Kolom adalah  Matriks Kolom adalah matriks yang terdiri dari satu kolom.
          Contoh :   
                            
  • Matriks Tegak  adalah  suatu matriks yang banyaknya baris lebih dari banyaknya kolom.
          Contah :

  • Matriks datar adalah Matriks  yang banyaknya baris kurang dari banyaknya kolom.
       Contoh :




Berdasarkan elemen-elemen penyusunnya matriks  dapat di bagi menjadi beberapa jenis yaitu :

  • Matriks Nol adalah Suatu matriks   yang setiap unsurnya 0 berordo  m x n, ditulis dengan huruf  O. 
        contoh :
  • Matriks Diagonal adalah  suatu matriks bujur sangkar yang  semua unsurnya , kecuali unsur-unsur pada diagonal utama adalah nol.
       Contah :  


  • Matriks Segi Tiga adalah  suatu matriks bujur sangkar yang unsur-unsur dibawah atau diatas diagonal utama semuanya 0 .
       Contoh : 


       Dimana Matriks C disebut matriks segi tiga bawah dan matriks D disebut matriks segitiga atas.


  • Matriks Skalar adalah matriks diagonal yang unsur-unsur pada diagonal utama semuanya sama.
       Contoh :


  • Matriks Identitas atau Matriks Satuan adalah matriks diagonal yang unsur-unsur pada diagonal utama semuanya satu ditulis dengan huruf  I.
       Contoh :


  • Matriks Simetri adalah  suatu matriks bujur sangkar yang unsur pada baris ke-i kolom ke-j  sama dengan unsur pada baris ke-j kolom ke-i sehingga aij = aji .
       Contoh : 

logika matematika part 2

Logika Matematika

  Sebelum kita masuk ke logika matematika, kita harus tahu dulu definisi logika tersebut yang nantinya sangat berperan dalam pemahaman logika matematika sendiri. Logika berasal dari kata Yunani kuno λόγος (logos) yang berarti hasil pertimbangan akal pikiran yang diutarakan lewat kata dan dinyatakan dalam bahasa. Logika mempunyai beberapa manfaat, yaitu :
  •     Membantu setiap orang yang mempelajari logika untuk berpikir secara rasional, kritis, lurus, tetap, tertib, metodis dan koheren.
  •     Meningkatkan kemampuan berpikir secara abstrak, cermat, dan objektif.
  •     Menambah kecerdasan dan meningkatkan kemampuan berpikir secara tajam dan mandiri.
  •     Memaksa dan mendorong orang untuk berpikir sendiri dengan menggunakan asas-asas sistematis
  •     Meningkatkan cinta akan kebenaran dan menghindari kesalahan-kesalahan berpkir, kekeliruan, serta kesesatan.
  •     Mampu melakukan analisis terhadap suatu kejadian.
  •     Terhindar dari klenik , gugon-tuhon ( bahasa Jawa )
  •     Apabila sudah mampu berpikir rasional,kritis ,lurus,metodis dan analitis sebagaimana tersebut pada butir pertama maka akan meningkatkan citra diri seseorang.
Setelah kita mengetahui tentang Logika kita akan lebih mudah dalam mempelajari logika matematika. Berikut ini hal-hal yang menyangkut logika matematika.
1. Pernyataan
Yang dimaksud dengan pernyataan adalah kalimat yang mempunyai nilai benar atau salah tetapi tidak  sekaligus kedua-duanya (benar dan salah). Dan suatu kalimat bukan pernyataan jika kita tidak dapat menentukan kalimat tersebut benar atau salah atau mengandung pengertian relatif. Terdapat dua jenis pernyataan matematika yaitu pernyataan tertutup dan pernyataan terbuka. Pernyataan tertutup merupakan pernyataan yang nilai kebenarannya sudah pasti sedangkan pernyataan terbuka yaitu pernyataan yang nilai kebenarannya belum pasti. untuk lebih jelasnya perhatikan contoh dibawah ini.
contoh :
6×5 = 30 ( pernyataan tertutup yang benar )
6+5=10 ( pernyataan tertutup yang salah )
gula putih rasanya manis ( pernyataan terbuka )
Jarak jakarta bandung adalah dekat ( bukan pernyataan, karena dekat itu relatif )
2. Ingkaran Pernyataan ( negasi )
Ingkaran merupakan pernyataan yang menyangkal yang diberikan. Ingkaran pernyataan dapat dibentuk dengan menambah ‘Tidak benar bahwa …’ didepan pernyataan yang diingkar dinotasikan ~.
contoh :
pernyataan B              : Sepeda motor beroda dua
negasi pernyataan B : tidak benar sepeda motor beroda dua
3. Pernyataan Majemuk
3.1. Konjungsi
suatu pernyataan p dan q dapat digabung dengan kata hubung ‘dan’ sehingga membentuk pernyataan majemuk ‘ p dan q ‘ yang disebut dengn konjungsi nyang dilambangkan dengan
notasi konjungsi
tabel konjyngsi
Tabel disamping menunjukan beberapa pernyataan yang digabungkan menjadi pernyataan majemuk konjungsi.
Jika menemukan suatu pernyataan, kita pasangkan saja dengan tabel disamping sehingga kita dapat menemukan bagaimana kalimat majemuk konjungsinya.

3.2. Disjungsi
suatu pernyataan p dan q dapat digabung dengan kata hubung ‘atau’ sehingga membentuk pernyataan majemuk ‘ p atau q’ yang disebut dengn disjungsi yang dilambangkan dengan
disjungsi
tabel disjungsi
Tabel disamping menunjukan beberapa pernyataan yang digabungkan menjadi kalimat majemuk disjungsi.
sehingga jika kita menemukan suatu pernyataan dan akan kita jadikan kalimat majemuk disjungsi kita tinggal lihat tabel, cari mana yang cocok maka kita akan menemukan bagaimana bentuk kalimat majemuk disjungsinya.

3.3. Implikasi
suatu pernyataan p dan q dapat digabung dengan kata hubung ‘jika maka’ sehingga membentuk pernyataan majemuk ‘ jikap maka q’ yang disebut dengan implikasi dan dilambangkan dengan
notasi implikasi 2
tabel implikasi

Tabel disamping menunjukan beberapa pernyataan yang digabungkan menjadi kalimat majemuk implikasi.
sehingga jika kita menemukan suatu pernyataan dan akan kita jadikan kalimat majemuk implikasi kita tinggal lihat tabel disamping, cari mana yang cocok maka kita akan menemukan bagaimana bentuk kalimat majemuk implikasinyanya.
3.4. Biimplikasi
suatu pernyataan p dan q dapat digabung dengan kata hubung ‘jika dan hanya jika’ sehingga membentuk pernyataan majemuk ‘ p jika dan hanya jika q’ yang disebut dengan biimplikasi dan dilambangkan dengan
notasi biimplikasi
tabel biimplikasi
Tabel disamping menunjukan beberapa pernyataan yang digabungkan menjadi kalimat majemuk biimplikasi.
sehingga jika kita menemukan suatu pernyataan dan akan kita jadikan kalimat majemuk biimplikasi kita tinggal lihat tabel disamping, cari mana yang cocok maka kita akan menemukan bagaimana bentuk kalimat majemuk biimplikasinyanya. Maka kita akan lebih mudah dalam menyelesaikan soal yang nanti akan kita hadapi.
4. Ekuivalensi pernyataan-pernyataan majemuk
ekuivalensi Ekuivalensi dari pernyataan-pernyataan majemuk ini sangat penting. Kita harus tahu bentuk negasi dari konjungsi, negasi dari disjungsi dan lain sebagainya dalam menyelesaikan berbagai bentuk pernyataan yang nantinya akan muncul. Jadi kita harus hafal bentuk euivalensi pernyataan-pernyataan majemuk disamping. Maka kita akan lebih mudah dalam menyelesaikan berbagai tipe soal yang nantinya akan kita temui. Alangkah baiknya kita hafal ekuivalensi pernyataan-pernyataan disamping.
Tidak perlu bingung dan terbebani, kunci dari matematika adalah hafal rumus dan bisa menggunakannya. Jika kita sering latihan soal maka secara otomatis kita akan hafal, dan pastinya kita akan mudah menggunakan rumus tersebut jika diterapkan dalam soal.
5. Konvers, Invers dan Kontraposisi
Dari sebuah implikasi dapat diturunkan pernyataan yang disebut konvers, invers dan kontraposisi dari implikasi tersebut
konvers,invers
6. Pernyataan Berkuantor
Pernyataan berkuantor merupakan pernyataan yang mengandung ukuran kuantitas. Ada 2 macam yaitu :
6.1 Kuantor Universal
Dalam pernyataan kuantor universal terdapat ungkapan yang menyatakan semua, setiap. Kuantor universal dilambangkan dengan ∀(dibaca untuk semua atau untuk setiap).
contoh : ∀ x R, x>0 dibaca untuk setiap x anggota bilangan riil maka berlaku x>0.
6.2 Kuantor Eksistensial
Dalam pernyataan kuantor eksistensial terdapat ungkapan yang menyatakan ada, beberapa, sebagian, terdapat. Kuantor eksistensial dilambangkan dengan ∃ ( dibaca ada, beberapa, terdapat, sebagian )
contoh : ∀ x R, x+5>1 dibaca terdapat x anggota bilangan riil dimana x+5>1.
7. Ingkaran dari pernyataan berkuantor
Ingkaran dari pernyataan berkuantor universal adalah pernyataan berkuantor eksistensial, begitu juga sebaliknya ingkaran dari pernyataan berkuantor eksistensial adalah pernyataan berkuantor universal.
contoh :
p : beberapa siswa SMA rajin belajar
~p : semua siswa SMA tidak rajin belajar
8. Penarikan Kesimpulan
Penarika kesimpulan dilakukan dari beberapa pernyataan yang diketahui nilai kebenarannya yang disebut premis. Kemudian dengan menggunakan prinsip-prinsip yang ada diperoleh pernyataan yang baru yang disebut kesimpulan/konklusi yang diturunkan dari premis yang ada. Penarikan kesimpulan seperti itu sering disebut dengan argumentasi. Suatu argumentasi dikatakan sah Jika premis-premisnya benar maka konklusinya juga benar. Terdapat 3 metode dalam penarikan kesimpulan, yaitu :
8.1 Modus ponens
premis 1 : p →q
premis 2 : p             ( modus ponens)
__________________
Kesimpulan: q
Arti Modus Ponens adalah “jika diketahui p → q dan p, maka bisa ditarik kesimpulan q“.  sebagai contoh :
premis 1 : Jika bapak datang maka adik akan senang
premis 2 : bapak datang
__________________
Kesimpulan: Adik senang
8.2 Modus Tollens
premis 1 : p →q
premis 2 : ~q             ( modus tollens)
__________________
Kesimpulan: ~p
Modus Tollens berarti “jika diketahu p → q dan ~q, maka bisa ditarik kesimpulan ~p“. sebagai contoh :
premis 1 : Jika hari hujan, maka adik memakai payung
premis 2 : Adik tidak memakai payung
___________________
Kesimpulan : Hari tidak hujan
8.3 Silogisme
premis 1 : p→q
 premis 2 : q → r            ( silogisme)
       _________________
Kesimpulan:  p →r
Silogisme berarti “jika diketahu p → q dan q→r, maka bisa ditarik kesimpulan p→r“. sebagai contoh :
Premis 1 : Jika harga BBM naik, maka harga bahan pokok naik.
Premis 2 : Jika harga bahan pokok naik maka semua orang tidak senang.
__________________________________________________
Kesimpulan:  Jika harga BBM naik, maka semua orang tidak senang.

Catatan Tambahan:
Hukum de Morgan:
¬(p Λ q) p V ¬q)¬(p V q)p Λ ¬q)
Ekuivalensi implikasi:
(p → q) (¬p V q)
Mudah-mudahan paparan Logika Matematika ini dapat membantu temen-temen semua.

logika matematika part 1

Operasi Logika Matematika

Pernyataan, Kalimat Terbuka, dan Ingkaran

Pernyataan adalah kalimat yang bernilai benar atau salah, tapi tidak sekaligus keduanya. Contoh: Jakarta adalah ibukota Indonesia. (benar). Kota Jakarta terletak di Pulau Sumatera. (salah)
Kalimat terbuka adalah kalimat yang mengandung variabel, sehingga belum dapat ditentukan kebenarannya. Contoh: x^2 - 4x + 5 = 0 merupakan kalimat terbuka karena mengandung variabel x
Ingkaran atau negasi merupakan kebalikan/lawan dari suatu pernyataan. Jika diketahui pernyataan P, maka negasinya adalah \sim P

Konjungsi, Disjungsi, Implikasi, dan Biimplikasi

Konjungsi merupakan operasi logika matematika dengan tanda hubung “dan”. Simbolnya adalah \wedge.
Jika ada dua pernyataan P dan Q, maka pada tabel kebenaran, hasilnya akan benar jika kedua pernyataannya bernilai benar. Sisanya salah.
Disjungsi merupakan logika matematika dengan tanda hubung “atau”, simbolnya \vee.
Pada tabel kebenaran, hasilnya hanya salah jika kedua pernyataannya salah.
Implikasi disebut juga dengan “pernyataan bersyarat“, simbolnya adalah \rightarrow atau \Rightarrow, yang dibaca dengan “jika”. Misal P \rightarrow Q maka dibaca “jika P maka Q. Pada tabel kebenaran, hasilnya benar jika kedua pernyataannya benar atau kedua pernyataannya salah.
Biimplikasi merupakan implikasi dua arah, dengan simbol \leftrightarrow atau \Leftrightarrow. Misal P \Leftrightarrow Q, maka dibaca “P jika dan hanya jika Q”.

Pernyataan Majemuk

Pernyataan majemuk merupakan pernyataan yang terdiri dari beberapa pernyataan tunggal. Jadi, pernyataan ini terdiri dari beberapa operasi logika matematika.
Contoh: (P \vee Q) \Leftrightarrow R

Konvers, Invers, dan Kontraposisi

Jika diketahui operasi logika matematika P \rightarrow Q, maka berlaku:
Konvers: Q \leftarrow P
Invers:  \sim P \rightarrow \sim Q
Kontraposisi: \sim Q \rightarrow \sim P

Pernyataan Berkuantor

Kuantor Universal atau kuantor umum, menggunakan kata: semua, seluruhnya, atau setiap. Contoh: Semua manusia akan mati. Simbolnya adalah \forall
Kuantor Eksistensial atau kuantor khusus, menggunakan kata: ada, beberapa, sebagian, terdapat. Contoh: Ada burung yang tidak bisa terbang. Simbolnya adalah \exists.

Penarikan Kesimpulan

Dari beberapa pernyataan yang benar (premis) dan saling berhubungan, dapat ditarik suatu kesimpulan dari premis-premis tersebut.
Ada 3 pola utama dalam menarik suatu kesimpulan, yaitu modus ponens, modus tollens, dan silogisme.
Perhatikan pola berikut.
logika matematika